Propagating Ideal Kernel Eigen-function for
Semi-supervised Learning

Abstract

Semi-supervised kernel is a useful tool towards lendin@thendant theories and
algorithms in kernel methods to semi-supervised learrihgrently, a large fam-
ily of algorithms relies on spectral transformations,,itae new kernel is built
on the eigenvectors of the empirical kernel matrix (suchraply Lapacian) with
rectified eigenvalues. Though demonstrating lot of sucdbsse algorithms are
computationally demanding, and the empirical kernel eigetors can be inaccu-
rate due to various practical factors. This paper pursuesvadirection in which
the desired eigenvectors are computed via propagatingdkeefanction of ideal
kernel. The extrapolation builds upon important graphcitries encoded in the
data, and easily takes into account the resultant matchitigtiae ideal kernel.
The inclusion of supervised information in computing thgegivectors, on the
other hand, make them more reliable and less dependent @hdiee of empir-
ical kernels. Our algorithm demonstrates improved tartighment and general-
ization performance. It requires only linear time and spamm@sumptions, and is
empirically orders of magnitudes times faster than the tenpart algorithms.

1 Introduction

Semi-supervised learning (SSL) is a useful learning séemdrere availability of large volumes of
unlabeled samples is shown to boost the learning perforenaitis only limited supervision. Among
the various directions that have been pursued on this tepij-supervised kernel design turns to a
promising one because it allows the abundant theories gaditdms in kernel methods to be lent
directly in solving SSL problem. A large family of algoritrnfior semi-supervised kernel relies on
spectral transformation, where the eigenvectors of theirgrapkernel matrix (mostly notably the
graph Lapacian) are used together with the rectified eideesdo build the new kernel.

Given ann x n similarity matrix X (or kernel matrix), the graph Lapacian is computedCas-
D—W,whereD € R"*" is a (diagonal) degree matrix such tiia = Z?:l K;;. The normalized

graph Lapacian is defined &s= I — D~ Y/2K D~'/2 wherel is identity matrix. The (normalized)
graph Lapacian matrix imposes important smoothness @nttrover the graph. In particular, a
smaller eigenvalue of it corresponds to a smoother eigeéovecer the graph, i.e., the entries of the
eigenvector corresponding to neighboring sample poirgckase to each other. Such smoothness
is very useful for predicting the actual class labels. Basedhis property, a general principle is
applied in spectral transformation to build semi-supegtikernel [7],

K=Y r(h)id; - (1)
=1

Here\;'s (i = 1,2, ...,n) are eigenvalues of the graph Lapaciare R™*" sorted in an ascending
order,¢;'s are the corresponding eigenvectors, afil is a non-increasing function which enforces
larger penalty for less smooth eigenvectors. Various ehofahe transform has been proposed
in the literatures. For example, the diffusion kernel [4tregponds ta-(\) = exp(—"—;/\); the
Gaussian filed kernel [8] uses$)) = %ﬂ For cluster kernel [1], the eigenvectosss are based

on the degree-normalized kernel matSx= D~'/2KD~'/2. SinceS and £ have the same set
of eigenvectors, with the corresponding eigenvalues )jgaiding up to 1y(-) is chosen as a non-
decreasing function in the cluster kernel, such as thedingg = A, the step-(\) = \; if i < k,
andr()\;) = 0if i > 0; or the polynomiat()\) = A%



Recently, the empirical kernel alignment [2] is proposeeMaluate the fitness of a kernel to the class
labels via the use of “ideal kerneK (x, z) = y(x)y(z), wherey(x) is the target concept (the class
label). It has been shown that the alignment score is shagulgentrated and has a close connection
with the generalization performance of a classifier [2]. fEfi@re maximizing the alignment with
the ideal kernel proves a general and effective way for semervised kernel design. For example,
a semi-definite programming formulation has been propasélito learn a kernel matri¥ that

is maximally aligned with the ideal kernel

max(Ky,yy'), subjecttdK||r =1,K >0, tracdK) = 1. 2
K

Here K, is the block of K corresponding to the training samplgss the vector of training labels.
In particular, if the kernel matri¥ is restricted to be spanned by the eigenvectors of the Liaplac
e, K =Y pi¢ig,, then the formulation (2) will be reduced to a quadraticainstrained
quadratic programming (QCQP) [6, 5]. This avoids the needhmose parameters ir(-), and
the nonparametric transform will lead to more flexible késnén [5], an order constraint on the
transformed eigenvalue is further considered, which |¢adise following optimization problem:

max vedyy )T Mpu
o

subject to IMp|| <1, u; >0,
i > ,ui+17i = 1725 sy TV 1.

Herep is the vector of transformed eigenvalye®, veq-) is the column vectorization operator of a
matrix, M = [ved K1 1), .., Ve K, +-)] whereK; ;.. is the sub-block of; = ¢,¢,] correspond-
ing to the labeled samples, argls are the eigenvectors of the graph Lapacian sorted in ddugn
order based on their corresponding eigenvalues. The oothstraint reflects important prior belief
that smoother eigenvectors should be given higher prioribuilding the kernel, and empirically it
has shown improved behavior over parametric and purely axampetric spectral transforms [5].

Lots of empirical successes have been observed with thdyfafmsemi-supervised kernels based
on spectral transform. However, the optimization procednvolved can be quite expensive. For
example, computing the eigenvalue decomposition of theatiamp already take®(n?) time and
O(n?) memory, and the complexity of QCQP and SDP is even more demgnéinother concern

is that building a kernel solely based on transform of thecspen may be restrictive in terms of
acquiring the desired kernel. Note that, eigenvectors héue- 1) degree of freedom while eigen-
values only haven, therefore the eigenvectors play a larger role in “shapithg’ kernel matrix.
However, eigenvectors of empirical kernel matrix (suchtesdraph Laplacian) can be inaccurate
due to various practical factors such as noise, kernel peters) or class separability. If these eigen-
vectors are simply left intact, their intrinsic flaws woutgbivitably inherit in building the new kernel,
leading to hampered alignment with the target concept anddferth degenerated performance.

To solve these problems, in this paper we proposed a new wag$igning semi-supervised kernels.
We do not grab the eigenvectors directly from the graph Lapaactually we do not even attempt to
learn a transform on them (for target alignment) becausmait flaws would still persist. Instead,
a set of desired eigenvectors are newly computed by proipageeal kernel eigenfunctions to the
overall data. The extrapolation builds upon important grstpuctures encoded in the input patterns,
and at the same time takes into account the resultant matetith the ideal kernel. Due to the
incorporation of the supervised information in computihg tigenvectors, we observe improved
target alignment and generalization performance. Theqeeg method is very efficient, where the
eigenvectors needed only depends on the number of clagseslds linearly with the sample size
and dimension, and runs orders of magnitudes times fastargkisting approaches.

The rest of the paper is organized as follows. In section 2anadyze properties of the ideal kernel

matrix and introduce the concept of kernel eigenfunctidregrolation. Based on these background,
in section 3 we proposed a new algorithm for semi-supenkseael design by propagating the ideal

kernel eigenfunctions. In section 4, we compare the peroga of our approach with a number of

algorithms based on spectral transformations. The latibsezoncludes the paper.



2 ldeal Kernel and Eigenfunction Extrapolation

In this section we give a detailed analysis on the eigeresysif the kernel matrix. First, we show

that the eigenvectors of the ideal kernel provides a pieswbdnstant embedding which perfectly
separates different classes. Although this is for the idiahtion, it provides a generally useful

insight on the “discriminating roles” of the kernel matrikhen we introduce some background on
the kernel eigenfunction and its extrapolation propertyicl will be used in our algorithm.

2.1 ldeal Kernd

Kernel matrix is the basic building block of kernel machinekich describes the pairwise sample
similarities. Here we examine how the kernel matrix progittes discrimination crucial for learning.
For simplicity, we consider the ideal kernel. But the intwitapplies to general kernel matrix as well.
In a multi-class problem, the ideal kernel matrix is blogagbnal as follows

1y, 0 0
0 1y, - 0

K* = . _ . (3)
0 0 11/

n

Hereny is the number of samples in tt¢h class, and we have assumed that samples are ordered
such that the first; samples belong to the first class, the followingsamples belong to the second
class, and so on. The eigen-system of the ideal kdiridhas the following properties.

Proposition 1. Given the ideal kernek* (3) with C clusters and corresponding cluster sizg's;

¢ the dominantCC eigenvalues are non-zero, each corresponding to the siaaetlass; the
restn — C' eigenvalues are zeros.

1—1 7
1 ;
o thekth eigenvectov; (1 <k < C)isVvi(i) =< vV g::l e tl<is g::l e
0 otherwise

Proof. Let the eigenvalue decomposition of the ideal kernel mdigx¥{*v* = A*v*. Note that
K* only hasC different rows (orthogonal to each other). Therefore it teatsk C with n — C
zero eigenvalues. On the other hand, note thattthentry ofv equaIsA%K*(z', Ov*, andK* has
a block-wise constant structure. Therefereis piecewise constant. Let be written asv* =
[U1, ..oy V1 V2, ...y Ve, .., UK, ..., U] . Then the eigensystem can be written as a equation group
—— ——

ni n2 Nk
nivy = )\*1)1
*
na2v2 = A V2 (4)
NEVk = A Vi

Each equation in (4) gives rise to two conditions:= ny, or vz = 0. For the whole equation
groupto hold true, however, it's impossible to set= ny;, for £ = 1,2,...,C, since the size of
different classes can be different. The only feasible way gt equal to one of they’s, A = ny,,

and at the same time sgt = 0 for all thek # kq. There are” different ways to choosky, i.e., for
eachky = 1,2,...,C, the eigenvalue. = ny,; as to the eigenvector, all the entries corresponding

to classk (k # ko) will be zero, and entries corresponding to clagswill be \/717 (since they are
0
equal and should normalize to 1). This completes the proof. O

Proposition 1 shows that the eigenvectors of the ideal kemreesponding to the domina6teigen-
values will map different classes ontdpoints lying exactly on th€' orthogonal coordinate axes,
which provides the strongest discriminating informati@n the other hand, the eigenvalues only
signify the “strength” of theC'th cluster. Actually, even the eigenvalues were changeit arity
(under positivity constraint), the resultant (ideal) kadrmatrix is still block diagonal, and can be
used to produce exactly the same classification result wbeénd in a kernel machine. In other
words, the discrimination powers of the kernel matrix ig&dy manifested by its eigenvectors.



Although the eigenvectors of the ideal kernel provide vesgful discriminating information, it is
only available on the training examples. Therefore a napath is to “expand” this ideal infor-
mation to the whole data set. As will be discussed in the naxt this can be achieved based on
the eigenfunction extrapolation. Note that based on thal klernel, we can also compute the ideal
graph LapaciaL* = D* — K*, whereD* € R™*™ is the degree matrix computed basedron,

or the normalized oné* = | — (D*)~1/2K*(D*)~1/2. Due to the block-wise constant nature of
K*, the eigenvectors of* and £* are also piecewise constant and provide perfect embedding f
class discrimination (detailed derivations are similathtose for the ideal kernel and skipped here).
In other words, they have the same discriminating power @sdial kernel matrix. Therefore in
this paper we simply focus on the ideal kernel matrix.

2.2 Eigenfunction Expansion

Let .4 be a linear operator on a function space. The eigenfungtioina linear operator is any non-
zero function in that space that returns itself from the afirexcept for a multiplicative scaling
factor, i.e., Af = A\f, where) is called the eigenvalue. In this paper, we are interestéldetase
where A is a symmetric, positive semi-definite kerri€lx, z). The corresponding eigenfunction
#(-), given the underlying sample distributipix), is defined as

/K (X, 2)p(X)p(X)dx = \p(2). %)

The standard numerical method to approximate the eigetifunscand eigenvalues in (5) is to re-
place the integral with the empirical average

1 n

[ K Dpxs00dx~ > Klxi 2o ©)
=1

By choosingz = x; fori = 1,2, ..., n, equation (6) extends to a matrix eigenvalue decomposition

Kv = \v, whereK is the kernel matrix defined &s,;; = K (x;,x;) for 1 <i,j < n, andv is the

discrete counterpart @f in that¢(x;) ~ v(i). Then the eigenfunction can be extended as follows

2)~ 3 2 K2 ™

This is known as the Nystrom extension [10], which means tiia eigenvectors of the empirical

kernel matrix evaluated on a finite sample set can be usedpsxamators to the eigenfunction of

the linear operator. Interestingly, (7) is proportionathe projection of a test point computed in
kernel PCA [9]. The approximation can be justified by examgnihe convergence of eigenvalues
and eigenvectors as the number of examples increases [3, 9].

Equation (7) allows us to extrapolate the ideal kernel digretion from the set of training examples
to the whole data set. Suppose we are given the labeleli;set {x;}*, and the unlabeled data
Xu = {Xi}j—,n+1- Then, in order to expand the ideal kernel e|genfunct|orha)whole data set,
we can simply use the x m extrapolation matrixk,,,, = [K; K;,|', whereK;; € R™x™

is the kernel evaluated on the labeled set, &g € R™*(»~™) js that evaluated between the
labeled and unlabeled samples, and multiply it with theli#eenel eigenvectors (the re-scaling of
the eigenvalues can be ignored). Note that ideally, theapgtation is best achieved by extracting
the sub-blockk,,,,, from ideal kernel matrix. However, since such knowledgedsavailable for
training, we can only turn to the empirical kernel matrix foe extrapolating purpose.

3 Propagating Ideal Kernel Eigenfunctions

As has been discussed, eigenvectors of the kernel matrjxgptaajor role in shaping the kernel
matrix. Therefore, “better” eigenvectors are expecteghtmsa kernel matrix that gives rise to better
performance. However, current approaches only rectifysgiectrum of the kernel matrix while
keeping the eigenvectors intact. Due to various practeiofs, such as noise, choice of kernel
types or parameters, and the class separability, eigeargeat the empirical kernel matrices are
almost always “contaminated” and will deviate from the ideaes. As a result, the kernel built



upon such eigenvectors may only provide restricted disoation. Of course the spectral transform
can “correct” the imperfect kernel matrix to make it bettégr@ed to the target. However the small
degrees of freedom (compared with that of eigenvectorsersakh correction limited.

Motivated from these concerns, we consider the scenarigenthe desired set of eigenvectors is
newly computed in building the semi-supervised kernel. @ossibility would be learning a para-
metric (such as linear) transform on the eigenvectors ofgtiaph Lapacian for better alignment.
However, eigenvectors computed from the empirical kerregtixcan be inaccurate, and some in-
trinsical flaws may likely survive a parametric transforrmaftect the alignment; on the other hand,
the eigenvalue decomposition of anx n matrix is too expensive for large problems. Therefore,
we follow a more direct and efficient way that obtains the iebeigenvectors by “propagating” the
eigenfunctions of the ideal kernel to the whole data set. eMiprecifically, letb* € R™*¢ be the
eigenvectors of the ideal kernel maté&* (each column is one eigenvector), ahd: R"*¢ be the
desired eigenvectors that will be used to span the ultimeedt. Then we want to seek an extrapo-
lation matrixT € R™*™ such that the desired eigenvectors can be obtained waT - &*. Here,

a simple choice of the extrapolation matfiix as has been discussed in Section 2, is the sub-block
Knm = [Ky K] 7. We have the following proposition on the property of suctrapolation.

Proposition 2. Let the extrapolation matrix b& = K,,,,,. Then the resultant eigenvectors will be
smooth with regard to the graph structures. More specificall

12, ) = @G )IF < ool =],
wherep = Iv||®||% is a constant.

Proof. Here we used the propertys (x1,z) — K(X2,2))? < vk |X1 — X2|/?. We sketch the proof
for some popular kernels. For RBF kerngl(x,z) = x(||x — z||), |[K(X1,2) — K(X2,2)] <

K (O|lIx1 — z|| = |Ix2 — Z||| < &'(€)]|x1 — X2||, where we used the middle value theorem in calculus
and the triangular inequality, andcan be chosen asax, |</(£)|; for linear or polynomial kernel
K(x,z) = (x"z+¢)?, [K(X1,2) — K(x2,2)| < #"(§)(x1 — X2) 2| < #'(€)[X1 — X2 - [|2]|, and

~+ can be chosen agR?, with R the maximum of the two: pairwise sample distances, and sampl
(vector) norms. With this inequality, we ha{j@ (i, :) — ®(j,:)||% = [|[(K(i,:) — K (j,:)) - tI)*HQF <
S (K (Xi,Xz) — K (%5, %)) - |@*|% < p- |[x; — %;||%. This completes the proof. O

Proposition 2 indicates that, entries of the extrapolaigereector on two samples; andx;, will
have a difference that is bounded by the input space disteqeex;||. Therefore the eigenvector is
expected to be smoothly varying with regard to the graplcaires, which is a desirable property for
predicting class labels. We can also divide each rol{ gf, by the sum of the entries in that row to
enforce an extra level of smoothness, which prevents theenigat fluctuations of the eigenvector.

Note that the extrapolation not only extends the eigenfandb the unlabeled samples, but also
simultaneously “re-estimates” the eigenfunction on tlaéning samples. Therefore, a natural re-
quirement for the extrapolation is that the reconstrucigérdunction should be consistent with
the ideal kernel eigenfunction (on the training samplegjictvis similar in spirit to kernel target
alignment. To achieve this, we introduce an extra linearsi@m P < R!*! on the extrapolation
matrix K,,,, i.e., T = K, P. This linear transform imposes a global, consistent distoron
K, for both the labeled and unlabeled set of samples. BasedednathsformT, the extrapolated
eigenvectors on the labeled set can be writteh,as= K;; P®*. In order to makeb,,. and®* close,
obviously, we should choose = K, '. In practice, to avoid numerical instabilities, we choose
P = (K;+0ol)~1, wherel is the identity matrix and is a small positive number. Then, the desired
eigenvector (on all the data points) can be obtained as

= [ K, ] (Ku+o1)~"- @7, ®)
and the corresponding kernel matrixdi® ". Here, for simplicity we set all th€' eigenvalues to be
unity, since as is shown in Section 2, the most importantiuiisoative information has already been
encoded in the eigenvectors. It's interesting to note that#on (8) is in the form of kernel ridge
regression, i.e., the labeled s¥tis used as the training samples to predict the unlabeledgoin

We illustrate the effect of the normalizatig#i;; + ol)~! on the eigenfunction extrapolation. We
choose 100 USPS digits (the first 50 are “4” and next 50 are & randomly choose 30 for
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Figure 1: Effect of the normalization term on the extrapolabf eigenfunctions. Gray curve are
extrapolated eigenvector and red crosses denote labatggiesa By normalization, entries of the
eigenfunction belongs to the same classes are “squeezéd $ame value; while those for different
classes are pushed apart.

labeling. Then we extend the ideal kernel eigenvedtoe R3°*1! to & € R1%9*1, Figure 1 shows
the result with and without the normalization. As can be sdérct extrapolation using = K,,,,

may not guarantee that the extrapolated entries have similaes for samples in the same class;
using the extrapolatiom = K,,,(K; + ol)~! can guarantee that the reconstructed eigenfunction
has almost the same value as the class labels on the traigtingrel the discrimination between
classes is also improved.

With the introduction of the normalization term, the smawhs property in Proposition 2 still holds,
but the constanp will be re-scaled by the Frobenius nort®||» = ||(K; + ol)7||r. As can

be seen, the regularization imposeddlycan bound the magnitudes of the smoothness factor, or
else| K;,'||» will approach infinity if K;; is singular. Actually, this also helps “strengthen” the
connection between the eigenfunction on the labeled arabetéd samples, which guarantees that
a good alignment on the training set can transfer to that eftéisting samples. In the extreme
casesc — +oo, T will be the same ad(,.,, (up to a scaling difference). The specific level of
“concentration” of alignment will depend on the extrapmatmatrix T applied, and a rigorous
theoretical analysis will be provided in the future to shigti on such relationship. In practice, we
simply fix o = 10~2 in all our experiments, which gives consistently good penfance.

At last we want to emphasize the computational efficiencywfroethod. Note that the number
of eigenvectors needed in our algorithm equals the numbelas§es. In comparison, the number
of eigenvectors used in spectral transformations is ugwehlbsen manually and much larger. On
the other hand, our algorithm needs not perform the eigaav@@composition of the x n kernel
matrix, thereby avoiding the computational bottlenecktfa whole family of algorithms based on
spectral transforms. The time complexity of our metho@{gamC + m?), wheren is the sample
size,m the training set size, ard the number of classes (the expansion of the ultimate keraghm
that takesO(n?) time is common for all semi-supervised kernel design sclsafrdassification is
performed). Empirically, our algorithm is tens to hundreéiimes faster than the counterparts.

4 Experiments

In this section, we compare the following semi-supervisemh&ls: (1) cluster kernel [1], wheré-)
is chosen as linear functiar(\) = X; (2) diffusion kernel(\) = exp(—X/c) [4]; (3) gaussian
field kernelr(\) = %ﬂ [8]; (4) our approach; (5) non-parametric graph kernel [§hg the first

p = 0.1n eigenvectors from the Laplaciah Evaluation is based on the alignment on the test set
and the classification performance of standard SVM usindeamed kernel. We tested 21 data
sets from some machine learning benchmark data.s#¥e used the Gaussian kerm@(x,z) =
exp(—||x — z||? - b) in all our experiments. The parameters are chosen as follGasthe kernel
width, we first computé, as the inverse of the average squared pairwise distanakthe@mchoose

1semi—supervised learningww.kyb.tuebingen.mpg.de/ssl-book/; libsvm datavww.cse.ntu.edu.tw/~cjlin/libsvmtools/datasets/



Table 1: Classification Performance semi-supervised kdesign schemes. For each cell, the top
row is the mean/std of the kernel alignment score|[(in]) on the test set, and in bracket is the
averaged time consumption (in seconds); the bottom roweisrtban/std of classification error (%).

Data Non-paramatric Ours Cluster Kernel Diffusion Kernel auGsian-field
size/dim Graph Kernel linear Kernel
Digitl 0.29+0.07 (84.9) 0.82-0.02 (0.3) 0.13-0.005 (2.4) 0.18-0.001 (13.0) 0.14-0.001 (12.6)
1500x 241 4.3H41.93 4.89+ 0.85 5.37%1.23 6.13:1.63 3.824+1.23
USPS 0.23+0.08 (74.9) 0.66-0.04 (0.3) 0.43-0.001 (2.5) 0.06-0.001 (16.0) 0.06:0.01 (12.7)
1500x 241 7.4% 4.41 6.64+1.27 6.56+1.02 7.27+0.59 9.81-0.49
COIL2 0.11+0.005 (73.4) 0.55-0.07 (0.3) 0.16:-0.001 (2.4) 0.053-0.003 (8.4) 0.0%0.00 (5.3)
1500x 241 18.49:2.47 13.44+2.41 18.51+4.66 19.08:2.05 19.32£1.89
BSI 0.074+0.003 (9.9) 0.14-0.04 (0.1) 0.04:0.001 (0.2) 0.07%:0.003 (0.4) 0.0%:0.002 (0.5)
1500x 241 32.95+3.38 32.99+3.10 42.02£2.89 33.58:2.83 34.85:2.75
COIL 0.01£0.001 (199.5) 0.120.005 (x) 0.08:)0.002 (2.58) 0.06:0.001 (8.3) 0.0%:0.001 (5.5)
1500x 241 21.96:3.24 9.1440.96 10.89+1.12 11.6741.43 11.75£1.49
g241n 0.40+£0.003 (108.2) 0.3%0.03(0.3) 0.020.007 (2.5) 0.04-0.00 (20.3) 0.04:0.00 (6.7)
1500x 241 13.64+1.28 24.11£1.73 26.59:3.96 19.68:1.52 18.611.75
Text 0.13£0.01 (181.0) 0.3@0.02 (4.71) 0.03:0.001 (68.1) 0.030.00(208.0)  0.03:0.004 (130.7)
1500x 11960 25.5%1.65 23.42+1.46 32.90+6.64 24.89:1.81 26.78:4.88
usps38 0.48+0.004 (77.3) 0.840.02 (0.3) 0.120.001 (1.6) 0.1%0.001 (6.8) 0.1%0.001 (4.5)
1200x 256 4.82+1.33 2.82+0.83 5.10+0.89 6.06£1.01 6.06£0.85
usps49 0.40+0.13 (82.1) 0.86-0.01 (0.3) 0.02£0.001 (1.9) 0.08:0.001 (9.3) 0.0#0.001 (8.9)
1296x 256 2.83£0.92 1.98+0.52 6.29+2.11 8.26£0.83 10.6741.24
usps56 0.48+0.06 (80.0) 0.86-0.01 (0.3) 0.120.001 (1.7) 0.09-0.003 (18.2) 0.120.001 (5.0)
1220x 256 2.870.92 2.44+0.59 3.89£1.57 3.85£0.97 5.79£1.06
usps27 0.58+0.004 (101.8)  0.940.006 (0.3) 0.3#£0.001 (2.3) 0.18-0.001 (11.8) 0.13-0.001 (6.9)
1376x 256 1.79t0.42 1.21+0.25 1.80+0.25 2.28t0.56 4.80:1.29
odd/even 0.21+0.008 (419.0) 0.650.03 (0.4) 0.120.001 (8.8) 0.03-0.004 (38.5) 0.08:0.00 (22.3)
2007x 256 10.14:2.11 9.58+1.56 14.59+-1.49 14.08-2.04 15.64:2.91
adultla 0.28+0.02 (116.7) 0.36:0.04 (0.3) 0.29:0.001 (2.0) 0.25-0.002 (13.9) 0.04-0.00 (18.9)
1605x 123 26.96:1.75 23.84+2.13 24.35+1.98 31.3%:2.56 31.89:3.00
wla 0.22+0.11 (155.4) 0.340.08 (0.3) 0.0720.00 (3.8) 0.120.00(31.2) 0.1#0.00 (22.6)
2477x 300 24.78:8.97 20.45:6.17 46.33:-28.06 16.989.32 8.07+2.49
sonar 0.17+£0.03 (3.7) 0.520.07 (0.1) 0.16:0.01(0.1) 0.16:0.004 (0.2) 0.18-0.004 (0.4)
208x 60 21.143.26 14.5#3.24 15.88:3.74 14.16+3.06 22.70+3.62
australian 0.39+0.07 (7.53) 0.553-0.02 (0.2) 0.02:0.00 () 0.16£0.01 (1.5) 0.16-)0.004 (1.4)
690x 14 14.560.67 13.19+0.64 14.45+1.21 18.48:2.92 14.93+1.31
diabetes 0.16+0.06 (34.75) 0.280.03 (0.1) 0.1#0.003 (0.3) 0.03-0.001 (4.8) 0.06-0.001 (1.5)
768x 8 26.14+1.82 25.67+1.87 27.20+1.64 28.84:1.74 29.95:2.02
splice 0.13+0.004 (53.6) 0.320.03(0.1) 0.02:0.003 (0.3) 0.002-0.00 (4.2) 0.03-0.00 (4.1)
1000x 60 23.75+2.55 24.49+1.85 26.53:2.58 24.48-1.48 24.1%1.46
german 0.03+0.01 (27.5) 0.12-0.04 (0.1) 0.26:0.00 (0.3) 0.12£0.003 (0.6) 0.04).01 (2.5)
1000x 24 32.54£3.92 30.94 +2.48 32.24£3.31 36.99:3.47 36.86:3.21
svmguidela 0.28+0.01 (436.3) 0.680.14 (0.2) 0.23:0.03 (4.6) 0.0#0.00 (86.7) 0.18-0.001 (38.9)
3089x 4 5.82+£1.80 5.10+0.97 5.73+0.51 6.24+1.66 7.13t1.75
liver 0.07+£0.007 (11.0) 0.120.03(0.1) 0.03:0.01 (0.1) 0.04:0.00 (0.6) 0.06:0.002 (0.5)
345%x6 33.6A3.85 32.23+3.69 38.14+3.95 38.46:3.16 37.69:3.64

b amongb - {5, 15, +,1,5,10,25} that gives the best performance. The paramet@nde are
chosen from{10=°,1073,10~!,1} and {102,107 1,1, 10, 102}, respectively. For each data, the
algorithms are repeated 30 times with 50 labeled samplekraly chosen for each class. Results
are reported in Table 1, including time consumption, aligntrscore, and classification error.

As can be seen from Table 1, our algorithm gives competite/égomance on most data sets. It
is also the most efficient and can be hundreds of time fastesethlgorithms based on parametric
or nonparametric transforms. We note that the cluster kemsiag linear spectral transform is also
quite efficient, because it only needs to compute the nomedkernel matrix but not the eigenvalue
decomposition. However the performance is inferior. Ogodathm gives high alignment score for
most of the data sets. On some data sets (e.g. splice), arithig has a lower prediction accuracy
but higher alignment. This is because the classifier usedi{S¥volves complex optimization
while the connection between kernel alignment and the gdimation performance is currently only
shown for simple classifiers like the Parzen window [2].

We observe that algorithms using spectral transforms datively sensitive to the kernel para-
meter. Although the kernel target alignment can somewhatréct” the imperfect kernel ma-
trix, the small degrees of freedom of the eigenvalues (coathaith eigenvectors) may limit such
corrections. In comparison, our approach compute the etbgigenvectors via propagating the
ideal kernel eigenfunction and is therefore more robusguié 2 plots the classification perfor-



mance of different semi-supervised kernels w.r.t. the RBf&l parametel (from 7 grid values

bo - {5, 15, %, 1,5,10,25}). As can be seen, the performance of our method is relatitelyle.
This greatly eases the difficulty of parameter tuning: incficg our algorithm gives reasonably
good performance by simply choosing the RBF kernel widtthasatveraged square pairwise sam-
ple distances (i.eb, = by), which can be observed from Figure 2 as well.

50
65 nonpara graph kernel nonpara graph kernel 50 nonpara graph kernel r
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Figure 2: Performance of different semi-supervised kamalt. the kernel parameter.

5 Conclusion

This paper proposed a new algorithm for semi-superviseugkelesign. Unlike traditional methods
that directly use the eigenvectors of the graph Lapaciah witectified spectrum, we propose to
compute the desired eigenvectors via propagating the kdeakl eigenfunction. The key observa-
tion is that, while eigenvectors from the empirical kerneltrix alone may contain inevitable flaw
due to various practical factors, computing them based tragalating the ideal kernel eigenfunc-
tion will be more reliable and less dependent on the choiaamgdirical kernels. The extrapolating
process reflects important similarity relation encodedhihput data, and also takes into account
the alignment with the target concept. Our algorithm givesoeiraging performance and the time
complexity is only linear in the same size. In the future wallséxplore different ways for propa-
gating the ideal kernel information and combination of ripldt kernels from different resources.
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